Journal of Craniofacial Surgery Seminal Studies in Facial Reanimation Surgery: Consensus and Controversy in the Top 50 Most Cited Articles --Manuscript Draft--

Manuscript Number:					
Full Title:	Seminal Studies in Facial Reanimation Surgery: Consensus and Controversy in the Top 50 Most Cited Articles				
Article Type:	Literature Scan (Invited Only)				
Keywords:	Facial reanimation, free muscle transfer, nerve coaptation, citation analysis, bibliometrics, most-cited articles				
Corresponding Author:	Jose Muro-Cardenas, B.A. Mayo Clinic: Mayo Clinic Minnesota Rochester, MN UNITED STATES				
Corresponding Author Secondary Information:					
Corresponding Author's Institution:	Mayo Clinic: Mayo Clinic Minnesota				
Corresponding Author's Secondary Institution:					
First Author:	Thanapoom Boonipat, M.D.				
First Author Secondary Information:					
Order of Authors:	Thanapoom Boonipat, M.D.				
	Malke Asaad, M.D.				
	Ahmad Al-Mouakeh, M.D.				
	Jose Muro-Cardenas, B.A.				
	Samir Mardini, M.D.				
	Mitchell A. Stotland, M.D., FRCSC				
	Graeme E. Glass E. Glass, PhD, FRCS(Plast)				
Order of Authors Secondary Information:					
Manuscript Region of Origin:	UNITED STATES				
Author Comments:					
Suggested Reviewers:					
Abstract:	Facial paralysis can impair one's ability to form facial expressions that are congruent with internal emotion. This hinders communication and the cognitive processing of emotional experience. Facial reanimation surgery, which aims to restore full facial expressivity is a relatively recent undertaking which is still evolving. Due in large part to published techniques, refinements, and clinical outcomes in the scientific literature, consensus on best practice is gradually emerging, while controversies still exist. Taking stock of how the discipline reached its current state can help delineate areas of agreement and debate, and more clearly reveal a path forward. To do this, we have analyzed the 50 seminal publications pertaining to facial reanimation surgery. In longstanding cases, the free gracilis transfer emerges as a clear muscle of choice but the nerve selection remains controversial with prevailing philosophies advocating cross facial nerve grafts (with or without the support of an ipsilateral motor donor) or an ipsilateral motor donor only, of which the hypoglossal and nerve to masseter predominate. The alternative orthodoxy has refined the approach popularized by Gillies in 1934 and does not require the deployment of microsurgical principles. While this citation analysis does not tell the whole story, surgeons with an interest in facial reanimation will find that this is a good place to start.				

Sidra Medical & Research Center Department of Surgery, OPC-1, 120 Doha State of Qatar

25th February 2021

Dear Dr. Habal,

I hereby submit my article entitled "Seminal Studies in Facial Reanimation Surgery: Consensus and Controversies in the Top 50 Most Cited Articles" for consideration of publication in the journal.

Facial reanimation surgery is a relatively young sub-specialty which is still evolving. Largely through trial and error, the best practices are beginning to emerge but controversies still exist and are the subject of fierce debate in international forums dedicated to the subject. Over the past few years a number of authors have sought to take stock of where we are now by evaluating the top 50 most cited articles in subjects ranging from facial rejuvenation to hand surgery and this has been a useful exercise in establishing areas of consensus and controversy. We have sought to do the same for facial reanimation surgery, curating the top 50 most cited articles and drawing conclusions about where we are now and where we are going.

It has not been published elsewhere nor is it under consideration in another journal. If accepted, it will not be published elsewhere.

I thank you for your time in reviewing my article and hope that you find it suitable.

Yours sincerely,

Dr. Graeme E. Glass PhD, FRCS(Plast)

Seminal Studies in Facial Reanimation Surgery:

Consensus and Controversies in the Top 50 Most Cited Articles

Thanapoom Boonipat, M.D.¹; Malke Asaad, M.D.²; Ahmad Al-Mouakeh, M.D.³; Jose Muro, BA⁴;

Samir Mardini, M.D.¹; Mitchell A. Stotland M.D., FRCSC⁵; Graeme E. Glass, PhD, FRCS(Plast)⁵

Authors Affiliations:

¹Division of Plastic Surgery, Mayo Clinic, Rochester, MN

²Department of Plastic Surgery, MD Anderson Cancer Center, Houston, TX

³Aleppo University, Faculty of Medicine, Aleppo, Syria

⁴Mayo Clinic Alix School of Medicine, Rochester, MN

⁵Division of Plastic Surgery, Sidra Medicine and Weill Cornell Medical College, Doha, Qatar

Corresponding Author:

Graeme E. Glass, PhD, FRCS(Plast). C1, 120 1st Floor, OPC Sidra Medical and Research Center Al-Gharrafa St., Ar-Rayyan Doha, State of Qatar gglass@sidra.org

Abstract:

Facial paralysis can impair one's ability to form facial expressions that are congruent with internal emotion. This hinders communication and the cognitive processing of emotional experience. Facial reanimation surgery, which aims to restore full facial expressivity is a relatively recent undertaking which is still evolving. Due in large part to published techniques, refinements, and clinical outcomes in the scientific literature, consensus on best practice is gradually emerging, while controversies still exist. Taking stock of how the discipline reached its current state can help delineate areas of agreement and debate, and more clearly reveal a path forward. To do this, we have analyzed the 50 seminal publications pertaining to facial reanimation surgery. In longstanding cases, the free gracilis transfer emerges as a clear muscle of choice but the nerve selection remains controversial with prevailing philosophies advocating cross facial nerve grafts (with or without the support of an ipsilateral motor donor) or an ipsilateral motor donor only, of which the hypoglossal and nerve to masseter predominate. The alternative orthodoxy has refined the approach popularized by Gillies in 1934 and does not require the deployment of microsurgical principles. While this citation analysis does not tell the whole story, surgeons with an interest in facial reanimation will find that this is a good place to start.

Introduction:

Facial paralysis is a devastating condition that may impair one's ability to form facial expressions that are congruent with internal emotion thus adversely affecting communication, social interaction, and self-esteem.¹⁻³ According to the facial feedback hypothesis, the inability to express emotion through facial expression attenuates the emotional experience itself, and influences cognitive processing of the experience.^{4,5} Moreover, inability to move the muscles of the face purposefully has functional consequences for speech, mastication, deglutition and eye protection.⁶ Conversely, restoration of emotionally congruent facial expression has been shown to improve self-esteem and quality of life subjectively, although objective outcome measures are lacking.⁷

Many different approaches to surgical restoration of the absent smile have been described, and the path toward clinical progress has been predictably convoluted. Among the most notable early contributions include the report by Anderl ⁸, in 1973, of the use of cross facial (sural) nerve grafts (CFNG) from branches of the contralateral facial nerve to corresponding branches on the affected side for direct facial reanimation. These procedures were performed in two stages and the results were inconsistent, probably on account of the wide variations in the latency and thus contractile potential of the muscle targets.⁸ To address the unresponsiveness of the autologous facial musculature after prolonged denervation, Harii and colleagues, in 1976, first reported the use of the microvascular free gracilis muscle transfer for facial reanimation.⁹ In this case, the deep temporal nerve was used as the motor nerve donor. In 1980, O'Brien and colleagues¹⁰, combining these concepts, first described the use of the CFNG in tandem with a microvascular free muscle transfer (a case series in which both the gracilis muscle and the extensor digitorum brevis muscle were used). This approach (employing a microvascular free gracilis muscle transfer innervated by a pre-neurotized cross facial nerve graft) became the foremost surgical technique for smile restoration over the next 25 years.

It was recognized by some, however, that there were limitations to the CFNG including prolonged neurotization time and a weak signal and ipsilateral motor donors were revisited as alternatives, either in their own right or as a means of augmenting the neural signal and preserving the contractile potential of the autologous musculature while awaiting neurotization of the CFNG. These motor donors included the hypoglossal nerve ¹¹ and the nerve to masseter, a motor branch of the trigeminal nerve.¹² Others went further, using the nerve to masseter to innervate a free muscle transfer¹³ or using the nerve to masseter to facial nerve transfer for direct, one stage facial reanimation.^{14,15} Recent anatomic studies have revealed several advantages of the nerve to masseter a source or neural input.¹⁶

Concurrently, an alternative orthodoxy also gained momentum. This approach, an evolution of a traditional approach popularized by Gillies in his landmark paper of 1934¹⁷ used the temporalis as an ipsilateral muscle and/or fascial sling. This approach has undergone a number of refinements and variations by surgeons including McLaughlin (1953)¹⁸, Rubin (1974)¹⁹, May & Drucker²⁰, Byrne et al²¹, Labbé & Huault²² and, most recently, by Park et al (2020).²³ A number of ancillary procedures have been developed to complement the central focus on smile restoration, including the management of (nocturnal) lagopthalmos using a combination of a

Gold weight or similar to the upper eyelid and lateral canthopexy. A second free muscle transfer using platysma for eye closure has also been described.²⁴ Symmetrization of the lower lip has been achieved using botulinum toxin or selective myotomy of the contralateral side, and even muscle transfers to the ipsilateral side, for example the anterior belly of the digastric.¹¹

Taking stock of how the field of facial reanimation reached its current state can help delineate areas of agreement and debate, and more clearly reveal a path forward. To do this, we have curated and analyzed the 50 most-cited articles pertaining to facial reanimation surgery. This paper serves as a single point of reference for plastic surgeons interested in the evolution of facial reanimation surgery and the attendant rationale for contemporary approaches. ²⁵⁻³²

Methods:

Article selection

The Web of Science was queried to identify the most cited articles in the field of facial reanimation surgery from 1864-2020. The search was performed in February/March and again in October/November of 2020 and utilized all databases available at the Web of Science. Search terms included "smile", "facial", "face", "lip", "reanimation", "restoration", "musc* reconstruction", "musc* transplant*", "musc* transfer", "musc* graft", "nerve reconstruction", "nerve reconstruction", "nerve graft", "nerve transplant*", "nerve coaptation", "nerve co-aptation" and "neuromusc* reconstruction". The search was not restricted by language or date of

publication. A detailed summary of how this search strategy can be found in supplemental material.

Data extraction

Following completion of the search, a list was compiled of the top 500 most cited articles identified (see supplementary data). Beginning with the most cited, each article was, in turn, screened for their relevance to facial reanimation surgery by two authors (T.B. and M.A.) and discrepancies resolved following repetition by the senior author (G.G.). Purely anatomic or preclinical experimental studies were excluded, as were clinical studies that did not report explicitly on facial reanimation surgery. Review articles were also excluded on the basis of potential duplication of original data. This task was completed when the 50 most cited relevant original articles were identified. The following basic data was extracted from the identified articles: authors, journal and year of publication, country and institution of corresponding author and level of evidence. Information related to facial reanimation was also extracted. Data extraction was performed by two authors (T.B. and A.M.). In order to counter citation bias (the phenomenon whereby older articles have a higher number of citations merely on account of a longer citable period), a citation index was calculated for each.

Results:

The initial search returned a total of 3048 articles. Of these, the 500 most cited articles were selected and the title and abstract and, if necessary, the full texts were scrutinized to establish relevance. This process was conducted sequentially, beginning with the most cited. Once the

 50^{th} relevant article was identified, the process was stopped and the definitive list curated. The 50 most cited articles in facial reanimation surgery are summarized in Supplemental Table 1. The 50 most-cited articles were published between 1973 and 2015. The mean number of citations per article was 104.72 (± 62, 1 S.D. (one standard deviation)). The range of citations from the most cited to the 50^{th} most cited was 464 to 64. The mean citation index was 5.64 ± 3.18, 1 S.D. The total sum of all citations in the 50 articles was 5236 citations, or 5099 excluding self-citations. This is shown in Supplemental figure 1. The geographic distribution of the contributing institutions is shown in Supplementary Table 1. The corresponding institutional affiliations are shown in Supplementary Table 2. To evaluate the endurance of these seminal papers over time, a Spearman correlation was used to evaluate the number of citations per year against the number of years since publication (correlation = -0.73). This is shown in Figure 1.

In terms of the subject matter of the included studies, all were clinical studies. Clinical studies were classified according to their level of evidence, demonstrated by study type in Figure 2. Among the articles amenable to grading level of evidence (n= 44), most (n=28) were level IV evidence. The other articles were classified as level III (n=5) and level V (n=11).

Articles discussing outcomes (n=19) and comparisons of outcomes between different techniques (n=6) were most common, followed by new techniques and innovation (n=18), and grading/quantification of outcomes (n=7). This is shown in Figure 3. The muscle used to reanimate the face was discussed in 27 of the 50 studies. The most common muscle used to

restore facial animation was the gracilis (n=16), followed by temporalis (n=6), latissimus dorsi (n=7), pectoralis minor (n=3), serratus anterior (n=1), and rectus femoris (n=1). These are represented in Figure 4. Some papers discussed more than one source of muscle (n=12). The nerve used to reanimate the face was discussed in 39 of the 50 studies, and are shown in Figure 5. The nerve donor most commonly used to restore facial animation was the CFNG (n=16) and the hypoglossal nerve (n=16). In some studies, the hypoglossal donor was described in combination with a CFNG. The CFNG was also described in combination with an ipsilateral facial nerve or accessory nerve co-aptation. The nerve to masseter was the next most cited (n=7). Single studies reported use of the deep temporal nerve and a direct co-aptation from the contralateral side.

Discussion:

The contemporary surgical approach to facial reanimation is the distillation of around 50 yearsworth of peer-reviewed studies exploring different surgical strategies and protocols, investigative modalities, rehabilitation algorithms and outcome analyses. This study, a citation analysis, reveals the most cited articles in the field. If we accept that citations are, broadly speaking, representative of attributable peer value, the citation analysis gives us an interesting perspective on the evolution of facial reanimation surgery and the areas of consensus. Furthermore, it allows us to speculate over the existing areas of controversy and to draw conclusions about where we might be heading as we seek further refinements and consensus in our approach.

Historical perspectives

The birth of modern facial reanimation surgery can admissibly be attributed Anderl who, in 1973 first described the CFNG for neurotization of the autologous facial musculature in 5 patients⁸ and to Harii and colleagues who, in 1976⁹ first described the use of a microvascular free muscle transfer for the restoration of smile in 2 patients with long standing facial nerve palsy. Contemporaneously, O'Brien and colleagues applied the best principles of both studies, publishing a series of 20 patients who underwent reconstruction of long standing facial palsy in 1980.¹⁰ It comes as no surprise therefore that these papers are among the most cited articles in the field. This, however, only tells part of the story. The strength of any scientific enquiry lies with the fact that it is defensible. The inherent drawback of a citation analysis is that both the corroborative and contradictory work that serves as the basis for that defense is omitted from the narrative. For example, the work of Anderl was contemporaneous with that of both Smith and Scaramella, who, independent of each other, described CFNG in 1971.^{33,34} Thompson, again in 1971, described the use of skeletal muscle grafts (devascularized strips of skeletal muscle).³⁵ In 1975, Freilinger, interested in both the concepts of CFNG and the use of free muscle grafts described attempts to neurotize a free muscle graft using a CFNG in a patient with long standing facial palsy.³⁶ In the other case in Feilinger's series of two, a central, turned down strip of temporalis was innervated using a CFNG. In both cases the nerve was implanted directly into the muscle.

In response to the failure of earlier attempts to neurotize devascularized muscle grafts using CFNG, the utilization of fledgling microsurgical techniques to produce a vascularized muscle flap

innervated by a CFNG represented a paradigm shift in facial reanimation surgery, opening up new possibilities that, within a short space of time, had dramatically enhanced the repertoire of reproducible two-stage surgical options. That the first microvascular free muscle transfer should be the gracilis muscle which, over 40 years later is still the most commonly performed microvascular free muscle transfer for facial palsy is surprising but we can observe, through the work of O'Brien et al and Mayou et al independently (extensor digitorum brevis)^{37,38}, Harrison and Terzis independently (pectoris minor)^{39,40}, Harii again (latissimus dorsi)⁴¹, Hata and Koshima (rectus abdomnis)⁴² and Buncke(serratus anterior)⁴³ that the primacy of the gracilis muscle as a donor for facial reanimation did not go unchallenged. To variable degrees, these additional options are still used as per surgical preference.

More recently, the popularization of one-stage approaches using ipsilateral motor nerve donors is actually closer conceptually to Harii's seminal work of 1976 than the two-stage approach using a CFNG that succeeded it. Of these, the hypoglossal nerve is most commonly cited among the seminal papers. The first hypoglossal-facial transfer was described by Korte⁴⁴ in 1902, but led to significant tongue atrophy. In modern practice, a number of cases series and modifications have been described. Both Conley & Baker (1979)⁴⁵ and Gavron & Clemis (1984)⁴⁶ repopularized the direct hypoglossal to facial nerve co-aptation for ipsilateral facial palsy. To preserve hypoglossal nerve continuity and thus tongue tone and bulk, Sawamura and Abe used a side to end co-aptation.⁴⁷ while both May et al⁴⁸ and Terzis et al¹¹ split the hypoglossal nerve longitudinally. Additionally, May et al used a bridging nerve graft as they found the partial nerve graft was less mobile. More recently, the nerve to masseter has found

favor. It is an axonally dense nerve that provides an excellent motor signal with minimal morbidity and can, with therapy, yield a spontaneous smile in most cases.^{13,49} These options are popular not merely for direct facial nerve transfers in subacute facial nerve paralysis but also for the innervation of free muscle transfer in a one stage approach for long standing facial palsy (Manktelow).⁵⁰

Alternative orthodoxies

While nerve transfers and free muscle flaps brought the techniques of microsurgery to bear on facial palsy, there were others who continued to develop and refine the traditional approach using the ipsilateral temporalis popularized by Gillies in 1934. The most frequently cited adaption of Gillies approach is the lengthening temporalis myoplasty described by Labbé and Huault.²² The original paper was a case series of 10 patients and the technique was a variation on McLaughlin's modification of Gillies method.¹⁸ A larger case series was subsequently published.⁵¹ It deviated from the prevailing trend by requiring neither microvascular free tissue transfers, nerve transfers nor grafts. Modifications of this variation have since been described by others.^{21,23,52}

Where the consensus lies

The seminal papers reveal that there is consensus that longstanding facial palsy requires fresh muscle, that muscle grafts are not a good idea⁵³, that subacute, non-resolving facial palsy is best managed by a nerve transfer⁵⁴ and that the motor input of choice in all cases lies between the contralateral buccal plexus and an ipsilateral motor donor of which the hypoglossal and masseter nerves are the most popular.^{14,55} In the literature considered here, we found much

support, if not a clear consensus, for the microvascular free gracilis transfer as the muscle of choice in long standing facial palsy.^{56,57} There is a consensus that objective outcome measures are required to drive improvements in the quality of the literature and enable us to make better decisions.^{58,59}

Ongoing controversies

One of the key areas of controversy is the nerve used to reanimate the face. In essence, the consensus has been divided into those who favor a cross facial nerve graft and those who favor an ipsilateral motor donor. At the heart of the argument is the relative importance of spontaneity of smile and ease of rehabilitation over strength and predictability of neural signal and speed of re-nervation.^{16,60,61} The argument is complex and nuanced. Following denervation of skeletal muscle, the motor end plates begin to deteriorate and the potential for meaningful contraction is irreversibly lost by about 12-15 months.^{11,62} Accepting that the best muscles to make a smile are the ones that nature intended, facial palsy of less than 9 to 12 months duration can best be managed with a direct nerve transfer while smile restoration in long standing facial palsy requires a free muscle transfer. Whether providing a neural stimulus to the autologous musculature or a free muscle flap, advocates of the CFNG assert that smile spontaneity is superior^{54,63} and, in the case of long standing facial palsy, worth the extra stage as the CFNG is neurotized prior to muscle transfer to minimize denervation time. The counter argument avows that an ipsilateral motor donor, especially the nerve to masseter^{13,14,64} or the hypoglossal nerve^{47,62,65-69} are better options because these motor donors are more axonally dense and as the regenerating axons merely have to traverse one rather than two co-aptations, the strength of the neural signal arising at the motor end plates is superior¹⁶ and this translates to enhanced muscle excursion and more predictable results relative to the CFNG.^{60,70,71} Furthermore, recovery is faster and, with the correct motor donor, an initial volitional smile may achieve spontaneity in a high proportion of cases.^{13,60,72} The argument is sometimes framed as a choice between the relative merits of a one stage versus two stage approach. The alternative one stage option in long standing facial palsy is to avoid both a CFNG and an ipsilateral motor donor by harvesting a muscle flap with a long motor nerve (latissimus dorsi, rectus femoris) and coapting the nerve directly to the contralateral buccal plexus. The rationale for this approach is that it offers the benefits of a CFNG in terms of smile spontaneity without the drawbacks of a two stage reconstruction and the diminution of neural signal across two nerve coaptations.⁴² The major shortcomings of this method include prolonged muscle inertia and donor site morbidity. A free muscle transfer, innervated by a CFNG performed at the same time as has also been described.⁷³

When it comes to re-nervation of the autologous facial musculature, time is of the essence. While ipsilateral motor donors neurotize muscle targets relatively quickly, proponents of the CFNG manage prolonged muscle latency by supplementing the CFNG with an ipsilateral motor donor. The "babysitter" solution, first reported by Terzis in 1984⁶² and later expanded upon in her 75 patient follow up in 2009¹¹ used the partial hypoglossal to facial nerve transfer as an end-to-side co-aptation. The nerve to masseter has also been used as a "babysitter".⁷⁴ In the 32 landmark studies that discussed the topic, the use of the use of ipsilateral motor donors was the favored option in 12 and the CFNG was favored in 6. The remaining 14 described a combination of options Another important area of controversy, inferred by examination of the pivotal studies, is the lack of agreement in the means by which outcomes may be assessed. As the citation analysis and a broader perusal of the literature demonstrates, there is no consensus yet as to how this might be addressed.

Limitations

The mean number of citations per article presented in our study is 104, comparable with the numbers cited in previous plastic surgery seminal article reviews.^{25-31,75,76} Most articles discussed either outcome (n=19) or comparison of outcomes n=6, and novel or elaborated techniques (n=18). Based on level of evidence criteria ⁶², 28 studies were level IV, 11 studies are level V (case reports) and 5 studies are level III (case-control/comparison). Some studies were not amenable to level of evidence grading as they focused on grading scale/classification and quantification of outcomes (n=6). Higher levels of evidence will require carefully designed multi-institutional collaborations.⁷⁷

Care must be taken when interpreting an analysis based on maximal number of citations as a means of highlighting technical evolution and guiding best practice. It may only tell part of the story. It could be argued that the selection of these papers is part of a process of incremental confirmation bias that has helped them to become the most cited articles in the field. Moreover, pre-eminence in the field predictably results in a greater number of citations and makes self-citations more impactful. There are a total of 4 major groups represented in the 50 papers including Harii, Terzis, Zuker, and Hadlock groups who are presented a total of 16 times between them. It would be naive to think that the personalities, rivalries and specialty backgrounds of the main protagonists did not influence the evolution of the discipline of facial reanimation.

Future directions – towards a data-driven consensus

Ultimately, the clinical approaches employed in the field of facial reanimation must be scientifically defensible. Slowly but surely, clinical research is becoming more scientific and past collective failures which owed much to the power of personality and peer politics will fade into history. One crucial obstacle that is well on its way to being overcome is the issue of the objectiveness of outcome measures. Several groups have been working on this and options include linear morphometric data.^{78,79} Alternatively, our group has been working on using artificial intelligence to quantify smile before and after facial reanimation surgery by comparing the subject against thousands of control subjects.⁸⁰ This, in our view, is particularly attractive as, by obtaining objectively derived, ordinal data before and after surgery we can quantify the restoration of a natural smile; that ethereal phenomenon that defies reduction to a sum of vectors and excursions. This is, after all, the final arbiter of surgical success. Additionally, the use of patient reported outcome measures (PROMs) has permitted better objective comparisons among techniques from a patients perspective. Together these new tools offer the prospect of a data-driven consensus. Importantly, for the foreseeable future there will be ample scope for innovation in facial reanimation surgery. In amassing the tools needed to

objectively evaluate our innovations, we may find ourselves, like our senior colleagues did in the 1970's and 1980's on the cusp of a new era in facial reanimation surgery.

Conclusion:

An analysis of the 50 most cited original articles in facial reanimation surgery illuminates the major concepts of both the past and present. The gracilis muscle emerges as a clear muscle of choice in longstanding cases, while controversy still exists in term of the best nerve selection in both subacute (not requiring a muscle flap) and longstanding cases. Two prevailing philosophies exist. Proponents of the cross facial nerve graft cite evidence that this approach provides the best chance of a spontaneous smile. The alternative viewpoint avows that the signal is weak and muscle excursion limited using this approach and instead favor ipsilateral motor donors providing faster neurotization and greater facial landmark excursion owing to a stronger signal. The alternative orthodoxy has refined the approach popularized by Gillies and does not employ microsurgical principles. While this citation analysis does not tell the whole story, surgeons with an interest in facial reanimation will find that this is a good place to start.

Conflict of Interest Statement:

The authors have no conflicts of interest to declare or financial interest to declare in relation to the content of this article.

Acknowledgements:

We would like to thank Ms Cathleen de Groot, Library manager at Weill Cornell Medical College, Qatar and Ms Anushka Hardas, Librarian at Sidra Medicine, Qatar for their invaluable help with the search strategy and conduct (CdG) and in sourcing the papers (AH) used to write this paper.

References

1. Fu L, Bundy C, Sadiq SA. Psychological distress in people with disfigurement from facial palsy. Eye (Lond). 2011;25(10):1322-1326.

2. Weir AM, Pentland B, Crosswaite A, et al. Bell's palsy: the effect on self-image, mood state and social activity. Clinical Rehabilitation. 1995;9(2):121-125.

3. Nellis JC, Ishii LE, Boahene KDO, Byrne PJ. Psychosocial Impact of Facial Paralysis. Current Otorhinolaryngology Reports. 2018;6(2):151-160.

Izard CE. Facial expressions and the regulation of emotions. J Pers Soc Psychol.
 1990;58(3):487-498.

5. Kim L, Byrne PJ. Controversies in Contemporary Facial Reanimation. Facial Plast Surg Clin North Am. 2016;24(3):275-297.

Glass GE, Tzafetta K. Bell's palsy: a summary of current evidence and referral algorithm.
 Fam Pract. 2014;31(6):631-642.

7. Ho AL, Scott AM, Klassen AF, et al. Measuring Quality of Life and Patient Satisfaction in Facial Paralysis Patients: A Systematic Review of Patient-Reported Outcome Measures. Plastic and Reconstructive Surgery. 2012;130(1).

8. Anderl H. Reconstruction of the face through cross-face-nerve transplantation in facial paralysis. Chirurgia plastica. 1973;2(1):17-45.

9. Harii K, Ohmori K, Torii S. Free gracilis muscle transplantation, with microneurovascular anastomoses for the treatment of facial paralysis. A preliminary report. Plastic and reconstructive surgery. 1976;57(2):133-143.

10. O'Brien BM FJ, Morrison WA. . Cross-facial nerve grafts and microneurovascular free muscle transfer for long established facial palsy. Br J Plast Surg. 1980;33:202-215.

11. Terzis JK, Tzafetta K. The "babysitter" procedure: minihypoglossal to facial nerve transfer and cross-facial nerve grafting. Plast Reconstr Surg. 2009;123(3):865-876.

12. Hontanilla B, Marre D. Masseteric-facial nerve transposition for reanimation of the smile in incomplete facial paralysis. Br J Oral Maxillofac Surg. 2015;53(10):943-948.

13. Manktelow RT, Tomat LR, Zuker RM, et al. Smile reconstruction in adults with free muscle transfer innervated by the masseter motor nerve: effectiveness and cerebral adaptation. Plast Reconstr Surg. 2006;118(4):885-899.

14. Klebuc MJ. Facial reanimation using the masseter-to-facial nerve transfer. Plastic and reconstructive surgery. 2011;127(5):1909-1915.

15. J. OA, Klebuc MJ, Zuker RM. Indications and Outcomes of Free Tissue Transfer to the Lower Extremity in Children: Review. J Reconstr Microsurg. 2006;22(03):173-182.

16. Borschel GH, Kawamura DH, Kasukurthi R, et al. The motor nerve to the masseter muscle: an anatomic and histomorphometric study to facilitate its use in facial reanimation. J Plast Reconstr Aesthet Surg. 2012;65(3):363-366.

17. Gillies H. Experiences with Fascia Lata Grafts in the Operative Treatment of Facial Paralysis. Proceedings of the Royal Society of Medicine. 1934;27(10):1372-1382.

18. McLaughlin CR. SURGICAL SUPPORT IN PERMANENT FACIAL PARALYSIS. Plastic and reconstructive surgery. 1953;11(4).

19. RUBIN LR, Rubin LR. THE ANATOMY OF A SMILE: ITS IMPORTANCE IN THE TREATMENT OF FACIAL PARALYSIS. Plastic and reconstructive surgery. 1974;53(4):384-387.

20. May M, Drucker C. Temporalis Muscle for Facial Reanimation: A 13-Year Experience With 224 Procedures. Archives of Otolaryngology–Head & Neck Surgery. 1993;119(4):378-382. 21. Byrne PJ, Kim M, Boahene K, et al. Temporalis tendon transfer as part of a comprehensive approach to facial reanimation. Arch Facial Plast Surg. 2007;9(4):234-241.

22. D. Labbe MH. Lengthening Temporalis Myoplasty and Lip Reanimation. Plastic & Reconstructive Surgery. 2000;105(April):1289-1297.

 Park DJ, Chung JH, Baek SO, et al. Intraoral temporalis transposition for facial reanimation: A novel technique in facial nerve palsy. J Craniomaxillofac Surg. 2020;48(3):235-241.

24. Nassif T, Yung Chia C. Neurotized Platysma Graft: A New Technique for Functional Reanimation of the Eye Sphincter in Longstanding Facial Paralysis. Plastic and reconstructive surgery. 2019;144(6):1061e-1070e.

25. Christou P, Antonarakis GS. The 100 Most-Cited Human Cleft Lip and Palate–Related Articles Published in Dentistry, Oral Surgery, and Medicine Journals. The Cleft Palate-Craniofacial Journal. 2015;52(4):437-446.

26. Chang MT, Schwam ZG, Schutt CA, et al. The 50 Most Cited Articles in Facial Plastic Surgery. Aesthetic Plastic Surgery. 2017;41(5):1202-1207.

27. To P, Atkinson CT, Lee DH, Pappas ND. The Most Cited Articles in Hand Surgery Over the Past 20-Plus Years: A Modern-Day Reading List. The Journal of Hand Surgery. 2013;38(5):983-987.

28. Joyce CW, Carroll SM. Microsurgery: The Top 50 Classic Papers in Plastic Surgery: A Citation Analysis. Arch Plast Surg. 2014;41(2):153-157.

29. Joyce CW, Joyce KM, Sugrue CM, et al. Plastic surgery and the breast: a citation analysis of the literature. Plast Reconstr Surg Glob Open. 2014;2(11):e251-e251.

30. Mahon NA, Joyce CW, Thomas S, et al. The 50 Most Cited Papers in Craniofacial Anomalies and Craniofacial Surgery. Arch Plast Surg. 2015;42(5):559-566.

31. Sinha Y, Iqbal FM, Spence JN, et al. A Bibliometric Analysis of the 100 Most-cited Articles in Rhinoplasty. Plast Reconstr Surg Glob Open. 2016;4(7):e820-e820.

32. Waltzman JT, Tadisina KK, Orra S, et al. Who is Publishing in Facial Cosmetic Surgery? A Citation Analysis Across Specialties Over Five Decades. Aesthetic Surgery Journal.

2016;36(7):743-755.

33. Scaramella LF. Preliminary report on facial nerve anastomosis. . Second International Symposium on Facial Nerve Surgery. Osaka, Japan; 1970.

34. Smith J. A new technique of facial animation. Paper presented at: Transactions of the 5th International Congress of Plastic Surgery. London: Butterworth1971.

35. Thompson N. INVESTIGATION OF AUTOGENOUS SKELETAL MUSCLE FREE GRAFTS IN THE DOG: WITH A REPORT ON A SUCCESSFUL FREE GRAFT OF SKELETAL MUSCLE IN MAN1. Transplantation. 1971;12(5):353-363.

36. Freilinger G. A new technique to correct facial paralysis. Plast Reconstr Surg. 1975;56(1):44-48.

37. O'Brien BM, Pederson WC, Khazanchi RK, et al. Results of management of facial palsy with microvascular free-muscle transfer. Plastic and reconstructive surgery. 1990;86(1):12-22; discussion 23-14.

38. Mayou BJ, Watson JS, Harrison DH, et al. Free microvascular and microneural transfer of the extensor digitorum brevis muscle for the treatment of unilateral facial palsy. Br J Plast Surg. 1981;34(3):362-367.

39. Terzis JK, Noah ME. Analysis of 100 cases of free-muscle transplantation for facial paralysis. Plast Reconstr Surg. 1997;99(7):1905-1921.

40. Harrison DH. The pectoralis minor vascularized muscle graft for the treatment of unilateral facial palsy. Plastic and reconstructive surgery. 1985;75(2):206-216.

41. Harii K, Asato H, Yoshimura K, et al. One-stage transfer of the latissimus dorsi muscle for reanimation of a paralyzed face: a new alternative. Plastic and reconstructive surgery. 1998;102(4):941-951.

42. Koshima I, Moriguchi T, Soeda S, et al. Free rectus femoris muscle transfer for one-stage reconstruction of established facial paralysis. Plastic and reconstructive surgery.

1994;94(3):421-430.

43. Whitney TM, Buncke HJ, Alpert BS, et al. The serratus anterior free-muscle flap: experience with 100 consecutive cases. Plastic and reconstructive surgery. 1990;86(3):481-490; discussion 491.

44. W. K. Ein Fall von Nervenpfropfung: des Nervus facialis auf den Nervus hypoglossus. Deutsche Med Wihnshr. 1903;17:293-295.

45. Conley J, Baker DC. Hypoglossal-facial nerve anastomosis for reinnervation of the paralyzed face. Plastic and reconstructive surgery. 1979;63(1):63-72.

46. Gavron JP, Clemis JD. Hypoglossal-facial nerve anastomosis: a review of forty cases caused by facial nerve injuries in the posterior fossa. Laryngoscope. 1984;94(11 Pt 1):1447-1450.

47. Sawamura Y, Abe H. Hypoglossal-facial nerve side-to-end anastomosis for preservation of hypoglossal function: results of delayed treatment with a new technique. J Neurosurg. 1997;86(2):203-206.

48. May M, Sobol SM, Mester SJ. Hypoglossal-facial nerve interpositional-jump graft for facial reanimation without tongue atrophy. Otolaryngol Head Neck Surg. 1991;104(6):818-825.

49. Schaverien M, Moran G, Stewart K, et al. Activation of the masseter muscle during normal smile production and the implications for dynamic reanimation surgery for facial paralysis. Journal of plastic, reconstructive & aesthetic surgery. 2011;64(12):1585-1588.

50. Manktelow RT. Free muscle transplantation for facial paralysis. Clin Plast Surg. 1984;11(1):215-220.

51. Nduka C, Hallam MJ, Labbe D. Refinements in smile reanimation: 10-year experience with the lengthening Temporalis Myoplasty. J Plast Reconstr Aesthet Surg. 2012;65(7):851-856.

52. Garcia y Sanchez JM, Valdes Martinez DA, Huerta Gasca DM, et al. Temporal Muscle Bipartition and Tripartition Transposition for Reconstructing the Orbital and Oral Empty Space in Mucormycosis of the Middle Third of the Face. Journal of Maxillofacial and Oral Surgery. 2020.

53. Miller TA. Are free muscle grafts a reliable reconstructive method? Plast Reconstr Surg. 1978;62(4):597-599.

54. Terzis JK, Olivares FS. Long-Term Outcomes of Free-Muscle Transfer for Smile Restoration in Adults. Plastic and reconstructive surgery. 2009;123(3):877-888.

55. Hadlock TA, Greenfield LJ, Wernick-Robinson M, et al. Multimodality approach to management of the paralyzed face. Laryngoscope. 2006;116(8):1385-1389.

56. Harii K. Microneurovascular free muscle transplantation for reanimation of facial paralysis. Clin Plast Surg. 1979;6(3):361-375.

57. Terzis JK, Kalantarian B. Microsurgical strategies in 74 patients for restoration of dynamic depressor muscle mechanism: a neglected target in facial reanimation. Plastic and reconstructive surgery. 2000;105(6):1917-1931; discussion 1932-1914.

58. Coulson SE, Croxson GR, Adams RD, et al. Reliability of the "Sydney," "Sunnybrook," and "House Brackmann" facial grading systems to assess voluntary movement and synkinesis after facial nerve paralysis. Otolaryngol Head Neck Surg. 2005;132(4):543-549.

59. Hadlock TA, Urban LS. Toward a universal, automated facial measurement tool in facial reanimation. Arch Facial Plast Surg. 2012;14(4):277-282.

60. Bae Y-C, Zuker RM, Manktelow RT, Wade S. A comparison of commissure excursion following gracilis muscle transplantation for facial paralysis using a cross-face nerve graft versus the motor nerve to the masseter nerve. Plastic and reconstructive surgery. 2006;117(7):2407-2413.

61. Boonipat T, Robertson CE, Meaike JD, et al. Dual innervation of free gracilis muscle for facial reanimation: What we know so far. J Plast Reconstr Aesthet Surg. 2020;73(12):2196-2209.

62. Terzis JK. The "Babysitter" principle: a dynamic concept in facial reanimation. In: Proceedings of the Sixth International Symposium on the facial Nerve, Rio de Janeiro, Brazil, October 2–5, 1988:525

63. Wei F-C, Mardini S. Flaps and reconstructive surgery, 2nd edn. Elsevier, London.

64. Coombs C, Ek E, Wu T, Cleland H, Leung M. Masseteric-facial nerve coaptation—an alternative technique for facial nerve reinnervation. Journal of plastic, reconstructive & aesthetic surgery. 2009;62(12):1580-1588.

65. Manni JJ, Beurskens CH, van de Velde C, et al. Reanimation of the paralyzed face by indirect hypoglossal-facial nerve anastomosis. Am J Surg. 2001;182(3):268-273.

66. Cusimano MD, Sekhar L. Partial hypoglossal to facial nerve anastomosis for reinnervation of the paralyzed face in patients with lower cranial nerve palsies: technical note. Neurosurgery. 1994;35(3):532-533; discussion 533-534.

67. Arai H, Sato K, Yanai A. Hemihypoglossal-facial nerve anastomosis in treating unilateral facial palsy after acoustic neurinoma resection. J Neurosurg. 1995;82(1):51-54.

68. Hammerschlag PE, Brudny J, Cusumano R, et al. Hypoglossal-facial nerve anastomosis and electromyographic feedback rehabilitation. Laryngoscope. 1987;97(6):705-709.

69. Pensak ML, Jackson CG, Glasscock ME, et al. Facial reanimation with the VII-XII anastomosis: analysis of the functional and psychologic results. Otolaryngol Head Neck Surg. 1986;94(3):305-310.

70. Roy M, Corkum JP, Shah PS, et al. Effectiveness and safety of the use of gracilis muscle for dynamic smile restoration in facial paralysis: A systematic review and meta-analysis. J Plast Reconstr Aesthet Surg. 2019;72(8):1254-1264.

71. Faria JC, Scopel GP, Ferreira MC. Facial reanimation with masseteric nerve: babysitter or permanent procedure? Preliminary results. Ann Plast Surg. 2010;64(1):31-34.

72. Lifchez SD, Matloub HS, Gosain AK. Cortical adaptation to restoration of smiling after free muscle transfer innervated by the nerve to the masseter. Plastic and reconstructive surgery. 2005;115(6):1472-1479.

73. Kumar PA. Cross-face reanimation of the paralysed face, with a single stage microneurovascular gracilis transfer without nerve graft: a preliminary report. Br J Plast Surg. 1995;48(2):83-88.

74. Hontanilla B, Gómez-Ruiz R. Masseter nerve as "baby sitter" procedure in short-term facial paralysis. European Journal of Plastic Surgery. 2010;33:227-229.

75. Joyce CW, Joyce KM, Rahmani G, et al. Fat grafting: a citation analysis of the seminal articles. Plast Reconstr Surg Glob Open. 2015;3(1):e295-e295.

76. Tahiri Y, Fleming TM, Greathouse T, et al. Analysis of the 50 most cited papers in craniofacial surgery. Journal of Cranio-Maxillofacial Surgery. 2015;43(10):2152-2157.

77. Farrokhyar F, Karanicolas PJ, Thoma A, et al. Randomized Controlled Trials of Surgical Interventions. Annals of Surgery. 2010;251(3):409-416.

78. Bhama PK, Weinberg JS, Lindsay RW, et al. Objective outcomes analysis following microvascular gracilis transfer for facial reanimation: a review of 10 years' experience. JAMA Facial Plast Surg. 2014;16(2):85-92.

79. Frey M, Michaelidou M, Tzou CH, et al. Three-dimensional video analysis of the paralyzed face reanimated by cross-face nerve grafting and free gracilis muscle transplantation: quantification of the functional outcome. Plastic and reconstructive surgery. 2008;122(6):1709-1722.

80. Boonipat T, Asaad M, Lin J, et al Using Artificial Intelligence to Measure Facial Expression

following Facial Reanimation Surgery. Plastic and reconstructive surgery. 2020;146(5):1147-

1150.

Figure Legends:

Supplemental Table 1: A summary of the 50 most cited articles in the field of reanimation from 1976-present.

Supplementary table 1: Country of origin of the 50 seminal papers.

Supplementary table 2: Number of citations per institution of the 50 seminal papers.

Figure 1: Number of citations per year against the number of years since publication (correlation

= -0.73).

Supplemental figure 1: Number of studies meeting the inclusion criteria published annually from 1970 to 2019.

Figure 2: Clinical studies classified according to their level of evidence, exhibited by study type. Figure 3: Number of articles per decade discussing outcomes and comparisons of outcomes between different techniques.

Figure 4: The most common muscles used to restore facial animation.

Figure 5: The variety of nerves used in different decades to reanimate the face.

±

±

<u>*</u>

±

≛

Supplemental Table 1

Ref	Rank	Number of	Author	Year	Journal	Title	Summary
		Citations					
	1.	464	Harii K et al	1976	Plastic &	Free gracilis muscle	Two cases of free transfer of the gracilis muscle
					Reconstructive	transplantation,	for dynamic reconstruction of facial paralysis
					Surgery	with	described. This is the first report utilizing the
						microneurovascular	gracilis muscle.
						anastomoses for	
						treatment of facial	Follow-up study with electromyography, light
						paralysis -	microscopy, and electron microscopy.
						preliminary-report	
	2.	204	May M et al	1991	Otolaryngology-	Hypoglossal-facial	Report on the indication and results of the
					Head and Neck	nerve	hypoglossal-facial nerve interpositional jump
						interpositional-jump	graft procedures for facial reanimation in
						graft for facial	selected patients. Thirteen patients (two treated
						reanimation	for bilateral facial paralysis) having excellent, and
						without tongue	three superb, recovery of facial movement.
						atrophy	
	3.	181	Terzis JK &	1997	Plastic &	Analysis of 100	Reporting on clinical outcomes of one surgeon
			Noah ME		Reconstructive	cases of free-	using gracilis, pectoralis minor and latissimus
					Surgery	muscle	dorsi muscle transplantation for reanimation.
						transplantation for	Onset of muscle function was 21 weeks after
						facial paralysis	transplantation.
							80 percent of all patients achieved a moderate or
							better result.
	4.	179	Manktelow,	2006	Plastic &	Smile	Investigates the outcome of masseter motor
			RT		Reconstructive	reconstruction in	nerve-innervated gracilis in unilateral or bilateral
					Surgery	adults with free	facial paralysis, using a one stage procedure.

					muscle transfer	Spontaneous smile without thinking occur
					innervated by the	routinely in 59% of their patients (age range 16-
					masseter motor	61 years). Age did not affect the degree of
					nerve: Effectiveness	spontaneity of smile.
					and cerebral	
					adaptation	
5.	163	Harii, K	1998	Plastic &	One-stage transfer	Presentation of 24 patients who underwent one
				Reconstructive	of the latissimus	stage latissimus dorsi transfer for reanimation.
				Surgery	dorsi muscle for	21 patients (more than 87 percent) believed that
					reanimation of a	their results were excellent or satisfactory, which
					paralyzed face: A	also compares well with the results of the two-
					new alternative	stage method combining free-muscle transfer
						with cross-face nerve graft.
6.	154	Obrien, BM	1980	British Journal of	Cross-facial nerve	Cross-facial nerve grafts followed in 4 to 12
				Plastic Surgery	grafts and	months by microneurovascular free gracilis
				Plastic Surgery	grafts and microneurovascular	months by microneurovascular free gracilis transplantation can produce adequate
				Plastic Surgery	grafts and microneurovascular free muscle transfer	months by microneurovascular free gracilis transplantation can produce adequate reconstruction in the lower two-thirds of a
				Plastic Surgery	grafts and microneurovascular free muscle transfer for long established	months by microneurovascular free gracilis transplantation can produce adequate reconstruction in the lower two-thirds of a paralyzed face. Mixed sensory and motor deep
				Plastic Surgery	grafts and microneurovascular free muscle transfer for long established facial palsy	months by microneurovascular free gracilis transplantation can produce adequate reconstruction in the lower two-thirds of a paralyzed face. Mixed sensory and motor deep peroneal nerve and the small muscle bulk of the
				Plastic Surgery	grafts and microneurovascular free muscle transfer for long established facial palsy	months by microneurovascular free gracilis transplantation can produce adequate reconstruction in the lower two-thirds of a paralyzed face. Mixed sensory and motor deep peroneal nerve and the small muscle bulk of the extensor digitorum brevis limit its usefulness in
				Plastic Surgery	grafts and microneurovascular free muscle transfer for long established facial palsy	months by microneurovascular free gracilis transplantation can produce adequate reconstruction in the lower two-thirds of a paralyzed face. Mixed sensory and motor deep peroneal nerve and the small muscle bulk of the extensor digitorum brevis limit its usefulness in facial palsy. The gracilis has proved to be a much
				Plastic Surgery	grafts and microneurovascular free muscle transfer for long established facial palsy	months by microneurovascular free gracilis transplantation can produce adequate reconstruction in the lower two-thirds of a paralyzed face. Mixed sensory and motor deep peroneal nerve and the small muscle bulk of the extensor digitorum brevis limit its usefulness in facial palsy. The gracilis has proved to be a much superior muscle. A feasible method for total
				Plastic Surgery	grafts and microneurovascular free muscle transfer for long established facial palsy	 months by microneurovascular free gracilis transplantation can produce adequate reconstruction in the lower two-thirds of a paralyzed face. Mixed sensory and motor deep peroneal nerve and the small muscle bulk of the extensor digitorum brevis limit its usefulness in facial palsy. The gracilis has proved to be a much superior muscle. A feasible method for total reanimation of unilateral facial palsy is
				Plastic Surgery	grafts and microneurovascular free muscle transfer for long established facial palsy	 months by microneurovascular free gracilis transplantation can produce adequate reconstruction in the lower two-thirds of a paralyzed face. Mixed sensory and motor deep peroneal nerve and the small muscle bulk of the extensor digitorum brevis limit its usefulness in facial palsy. The gracilis has proved to be a much superior muscle. A feasible method for total reanimation of unilateral facial palsy is presented.

7.	139	Zuker, RM	2000	Plastic and	Facial animation in	Assessment of outcome in 10 patients with
				Reconstructive	children with	Mobius syndrome who underwent reanimation
				Surgery	Mobius syndrome	using gracilis muscle with masseter nerve. All
					after segmental	achieved reinnervation and significant
					gracilis muscle	improvement in functional outcomes.
					transplant	Discussion of surgical techniques is outlined in
						detail.
 8.	136	Bae, YC	2006	Plastic &	A comparison of	Case series comparing gracilis muscle innervated
				Reconstructive	commissure	with cross face nerve graft, ipsilateral masseteric
				Surgery	excursion following	nerve, and ipsilateral accessory nerve. Their
					gracilis muscle	results indicate that segmental gracilis muscle
					transplantation for	transplantation using the motor nerve to the
					facial paralysis using	masseter nerve for facial animation in children is
					a cross-face nerve	a very reproducible operation and provides a
					graft versus the	commissure excursion in the range of normal.
					motor nerve to the	
					masseter nerve	
9.	136	Labbe, D	2000	Plastic &	Lengthening	Report on using temporalis muscle for lip
				Reconstructive	temporalis	reanimation in 10 patients, which was a new
				Surgery	myoplasty and lip	novel technique. The author report satisfactory
					reanimation	outcomes with 4 year follow up.
10.	122	Coulson, SE	2005	Otolaryngology-	Reliability of the	Clinical grading of voluntary movement revealed
				Head and Neck	Sydney,	good correlation between ratings given on the
					Sunnybrook, and	Sydney and Sunnybrook systems, and good
					House Brackmann	reliability within each. The assessment of
					facial grading	synkinesis was far less reliable within and less
					systems to assess	related between systems. Although the House
					voluntary	Brackmann system's reliability was high,

					movement and	individual grades revealed some wide variation
					movement and	
					synkinesis after	between trained observers.
					facial nerve	
					paralysis	
11.	119	Terzis, JK	2009	Plastic and	The Babysitter	The original babysitter procedure offers
				Reconstructive	Procedure:	significant improvement in selected patients with
				Surgery	Minihypoglossal to	facial paralysis. Symmetry and coordinated
					Facial Nerve	movements can be restored, with satisfying
					Transfer and Cross-	aesthetic and functional outcomes.
					Facial Nerve	
					Grafting	
12.	119	Terzis, JK	1989	Plastic and	Pectoralis minor - a	The detailed operative approach for the
				Reconstructive	unique muscle for	pectoralis minor transfer is presented, along with
				Surgery	correction of facial	strategies for insetting this muscle unit in the
					palsy	new recipient site. The clinical case highlighted
						demonstrates the dual nerve supply and the
						resulting independent eye and smile movements
						with a total lack of mass action and/or synkinesis.
						Restorations of eye blink and a symmetrical and
						coordinated smile are the benefits of using this
						muscle to correct facial palsy.
13.	118	Obrien, BM	1990	Plastic and	Results of	The overall final result was excellent or good in
				Reconstructive	management of	51 percent of 47 patients available for follow-up,
				Surgery	facial palsy with	signifying the gracilis muscles reliability in free
					microvascular free-	transfer. Cranial nerve seven was utilized in the
					muscle transfer	muscle's innervation, preferably the ipsilateral if
						available. The authors believe that using the

							same cranial nerve is superior to methods
							involving other cranial nerves.
	14.	118	Harrison, DH	1985	Plastic and	The pectoralis	Report on 10 pectoralis minor transfer. The first
					Reconstructive	minor vascularized	stage constitutes a nerve graft from the
					Surgery	muscle graft for the	functional contralateral facial nerve to the
						treatment of	paralyzed side's preauricular region. Six months
						unilateral facial	later, the muscle is transferred to the denervated
						palsy	side to restore its neurovascular pedicle. The
							results demonstrate function in 8 of the 10
							grafts, with the two failures relating to early
							vascular thrombosis.
	15.	117	Manktelow,	1984	Plastic and	Muscle	Introduction of a new concept using only a small
			RT		Reconstructive	transplantation by	segment of the gracilis muscle under one motor
					Surgery	fascicular territory	nerve fascicle control for reanimation. A case
							report of one illustrative patient was discussed in
							detail along with the operative details. They
							discussed separating the gracilis into different
							fascicles innervated by different nerve fascicle
							for different reanimation function.
	16.	99	Arai H	1995	Journal of	Hemihypoglossal-	Report on 8 patients with hemihypoglossal-facial
					Neurosurgery	facial nerve	nerve anastomosis. It was concluded that
						anastomosis in	hemihypoglossal-facial nerve anastomosis
						treating unilateral	results in good facial reanimation as long as the
						facial palsy after	procedure is performed early after the onset of
						acoustic neurinoma	facial palsy and that this procedure may reduce
						resection	the degree of hemiglossal atrophy in comparison
							with classic hypoglossal-facial nerve
							anastomosis.
1							

17. 97	Frey M	1994	Plastic and	Development of a	On the basis of the results, three real static
			Reconstructive	new documentation	points and representative dynamic points were
			Surgery	system for facial	selected as well as relations of these points most
				movements as a	representative for the different facial
				basis for the	movements. For data collection, a simple
				international	instrument (Frey's faciometer) was developed. A
				registry for	preliminary report is given on the clinical
				neuromuscular	application of this new instrument.
				reconstruction in	
				the face	
18.96	Atlas, MD	1997	Laryngoscope	A new technique for	Report on 8 patients who underwent
				hypoglossal-facial	hemihypoglossal-facial nerve anastomosis. The
				nerve repair	authors conclude that by employing the
					techniques described highly satisfactory cosmetic
					and functional results may be expected, without
					compromising hypoglossal nerve function.
19. 95	Sawamura,	1997	Journal of	Hypoglossal-facial	This technique used in four patients with facial
	Y		Neurosurgery	nerve side-to-end	paralysis greater than 24 months, and provided
				anastomosis for	satisfactory facial reanimation, with no evidence
				preservation of	of hemi-tongue atrophy or dysfunction. It also
				hypoglossal	preserved glossal function, so this technique
				function: Results of	constitutes a successful approach in patients
				delayed treatment	with long-standing facial paralysis who wish to
				with a new	maintain tongue function.
				technique	
20. 94	Whitney,	1990	Plastic and	The serratus	Report on the serratus anterior free flap for
	ТМ		Reconstructive	anterior free-	reanimation. A single flap failure occurred, and
			Surgery	muscle flap -	four patients experienced partial flap loss.

						experience with 100	Emergent reexploration for suspected vascular
						consecutive cases	occlusion was required in six flaps, with an 83
							percent salvage rate. Significant complications
							occurred in 18 percent of recipient sites and 12
							percent of donor sites, with eight patients
							developing seroma/hematoma. All patients
							retained full shoulder range of motion.
	21.	92	Hohman,	2014	Laryngoscope	Etiology, Diagnosis,	Discussion of their clinical experiences in 200
			Marc			and Management of	patients. Bell's palsy remains the most common
						Facial Palsy: 2000	facial palsy; females present more often for
						Patients at a Facial	evaluation. Comprehensive diagnostic
						Nerve Center	investigation is necessary in atypical cases, and
							management must be multidisciplinary. The
							algorithms presented outline a single center's
							approach to the facial palsy patient, providing a
							framework that clinicians caring for these
							patients may adapt to their specific setting.
	22.	89	Andrel, H	1973	Chirurgia Plastica	Reconstruction of	Five cases are discussed here with respect to
						face through cross-	clinical and electrical (EMG) findings after cross
						face-nerve	face nerve graft to re-anastomose to the
						transplantation in	paralyzed side. Results after 18, 12, 8, 4 months
						facial paralysis	are reported with consideration of indication,
							technical procedure, construction of
							anastomoses, selection of facial nerve fascicles,
							scheduling of operative phases, results obtained,
							failures observed.
 	23.	87	Coombs, CJ	2009	Journal of Plastic	Masseteric-facial	Clinical description of masseteric nerve
					Reconstructive	nerve coaptation -	innervated gracilis in 8 patients, along with
I							

				and Aasthatia	an alternative	nothelegy evaluation of even county Discussed
				and Aesthetic	an alternative	pathology evaluation of axon counts. Discussed
				Surgery	technique for facial	advantage of this method, include the ease of
					nerve reinnervation	dissection, constant and reliable anatomy,
						powerful reinnervation of the facial
						muscles without donor site morbidity and the
						potential for return of spontaneous facial
						movement.
24.	87	Stennert, E	1979	Clinics in Plastic	Hypoglossal facial	A comparison of clinical and neurophysiologic
				Surgery	anastomosis - its	results of hypoglossal anastomosis with those of
					significance for	intratemporal reconstruction substantiates the
					modern facial	favorable literature about hypoglossal repair. The
					surgery .1.	procedure may be combined with procedures
					combined approach	using several regenerative nerves to improve
					in extra-temporal	functional and cosmetic results.
					facial-nerve	
					reconstruction .2.	
25.	85	Kumar, Pav	2002	Plastic and	Cross-face nerve	Description of traditional two stage gracilis-cross
				Reconstructive	graft with free-	face nerve graft and one stage gracilis-cross face
				Surgery	muscle transfer for	nerve graft for reanimation.
					reanimation of the	The two-stage method scored good symmetry at
					paralyzed face: A	rest in 67 percent, compared with 20 percent for
					comparative study	the single-stage method. There were fewer
					of the single-stage	complications with the single-stage method, and
					and two-stage	none of the patients had any problems relating
					procedures	to the donor site. The period of rehabilitation
						was reduced by 10 months with the single-stage
						method.

26. 85	Harii, K	1979	Clinics in Plastic	Micro-	Discussion of Dr. Harii approach to reanimation.
			Surgery	neurovascular free	A case series of 18 patients with various muscles
				muscle	(gracilis, extensor hallicis brevis, and latissimus
				transplantation for	dorsi), and various recipient nerve (facial, deep
				reanimation of	temoral, hypoglossal, cross-face nerve graft)
				facial paralysis	were presented. Operative procedures and
					results are summarized with almost all patients
					achieving good results.
27. 84	Navissano,	2005	Microsurgery	Neurotube((R)) for	Report on results of using Neurotube for
	М			facial nerve repair	segmental nerve defect. Their conclusion
					included: The limits of this method are: 1) it can
					only be used with gaps of less than 3 cm; 2) it is
					quite costly; 3) there are reports of possible
					intolerance; and 4) it is not suitable for lesions of
					the proximal part of the facial nerve.
28. 84	Freilinger, G	1975	Plastic and	New technique to	Discussion of two cases of unilateral facial
			Reconstructive	correct facial	paralysis, with advanced muscle atrophy. Their
			Surgery	paralysis	technique combines a free nerve graft across the
					face with a denervated temporalis muscle and
					extensor muscle to the foot. The result in both
					cases was good.
29. 83	Koshima, I	1994	Plastic and	Free rectus femoris	Report on anatomic study and results on 7
			Reconstructive	muscle transfer for	patients. The rectus muscle advantages include:
			Surgery	one-stage	(1) the safety and simplicity of one arterial supply
				reconstruction of	for anastomosis (2) the femoral nerve reaches
					the contralateral facial nerve for suturing; (3) a

					established facial	two-team operation is possible with the patient
					paralysis	laying supine; (4) the force and distance of
						contraction appropriately reanimate the face; (5)
						the rectus muscle can segmented for replacing
						facial muscles; (6) the tendinous fascia ends work
						well for anchoring sutures; and (7) no loss of
						donor leg function.
30.	80	Guntinas-	2006	American Journal	Postoperative	Analysis of outcomes of various facial nerve
		Lichius O		of Surgery	functional	grafting and anastomosis (facial-facial nerve
					evaluation of	anastomosis, grafting, hypoglossal-facial nerve
					different	anastomosis, or hypoglossal-facial interpositional
					reanimation	jump nerve) using visual analog scale and EMG in
					techniques for facial	53 patients. All analyzed facial reanimation
					nerve repair	techniques seem to lead nearly similar and
						satisfactory results.
31.	79	Klebuc, MJ	2011	Plastic and	Facial Reanimation	satisfactory results. Evaluation of 10 patients who underwent
31.	79	Klebuc, MJ	2011	Plastic and Reconstructive	Facial Reanimation Using the Masseter-	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation.
31.	79	Klebuc, MJ	2011	Plastic and Reconstructive Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the
31.	79	Klebuc, MJ	2011	Plastic and Reconstructive Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing
31.	79	Klebuc, MJ	2011	Plastic and Reconstructive Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months.
31.	79	Klebuc, MJ	2011	Plastic and Reconstructive Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months.
31.	79 79	Klebuc, MJ Johnson, PC	2011 1994	Plastic and Reconstructive Surgery Annals of Plastic	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer Simultaneous	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months. Development of new method of isolated facial
31.	79 79	Klebuc, MJ Johnson, PC	2011	Plastic and Reconstructive Surgery Annals of Plastic Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer Simultaneous quantitation of	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months. Development of new method of isolated facial movement in face region of the face. The assay
31.	79 79	Klebuc, MJ Johnson, PC	2011 1994	Plastic and Reconstructive Surgery Annals of Plastic Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer Simultaneous quantitation of facial movements -	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months. Development of new method of isolated facial movement in face region of the face. The assay has potential to be used as an adjunct to the
31.	79 79	Klebuc, MJ Johnson, PC	2011	Plastic and Reconstructive Surgery Annals of Plastic Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer Simultaneous quantitation of facial movements - the maximal static	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months. Development of new method of isolated facial movement in face region of the face. The assay has potential to be used as an adjunct to the presently used ordinal scales of facial nerve
31.	79 79	Klebuc, MJ Johnson, PC	2011 1994	Plastic and Reconstructive Surgery Annals of Plastic Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer Simultaneous quantitation of facial movements - the maximal static response assay of	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months. Development of new method of isolated facial movement in face region of the face. The assay has potential to be used as an adjunct to the presently used ordinal scales of facial nerve function by allowing actual quantitation of
31.	79 79	Klebuc, MJ Johnson, PC	2011 1994	Plastic and Reconstructive Surgery Annals of Plastic Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer Simultaneous quantitation of facial movements - the maximal static response assay of facial-nerve	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months. Development of new method of isolated facial movement in face region of the face. The assay has potential to be used as an adjunct to the presently used ordinal scales of facial nerve function by allowing actual quantitation of region-specific facial movement and vector
31.	79 79	Klebuc, MJ Johnson, PC	2011 1994	Plastic and Reconstructive Surgery Annals of Plastic Surgery	Facial Reanimation Using the Masseter- to-Facial Nerve Transfer Simultaneous quantitation of facial movements - the maximal static response assay of facial-nerve function	satisfactory results. Evaluation of 10 patients who underwent masseter to facial nerve transfer for reanimation. Motion developed average 5.6 months after the transfer, with 40% of patients developing effortless smile by 19 months. Development of new method of isolated facial movement in face region of the face. The assay has potential to be used as an adjunct to the presently used ordinal scales of facial nerve function by allowing actual quantitation of region-specific facial movement and vector planning during surgery.

33.	78	Terzis, JK	2008	Facial Plastic	Nerve transfers in	Discussion of the author experience with facial
				Surgery	facial palsy	reanimation reconstruction. The selected motor
						nerve must provide strong muscle contraction
						and allow the patient to control the facial
						movements. This paper presents the author's
						experience in selecting motor nerves that can
						function as possible donor nerves for dynamic
						facial reanimation.
34.	77	Lifchez, SD	2005	Facial Plastic	Cortical adaptation	Review of the authors outcomes with 3 Mobius
				Surgery	to restoration of	patients with reanimation using the masseteric
					smiling after free	nerve. Two childs were able to smile
					muscle transfer	independently without biting down. Eraly age
					innervated by the	contribute to cortical adaptation to smiling.
					nerve to the	
					masseter	
35.	75	Manni, JJ	2001	American Journal	Reanimation of the	Evaluation in 39 patients. Indirect hypoglossal-
				of Surgery	paralyzed face by	facial anastomosis is the preferred technique in
					indirect	most patients for whom the classical direct
					hypoglossal-facial	hypoglossofacial anastomosis is indicated.
					nerve anastomosis	
36.	72	Hontanilla, B	2008	Journal of Plastic	Automatic three-	Development of new 3D facial grading system
				Reconstructive	dimensional	and testing in 20 healthy volunteers. The
				and Aesthetic	quantitative analysis	accuracy of the FACIAL CLIMA system facial
				Surgery	for evaluation of	movement evaluation is demonstrated and also
					facial movement	the high intrarater and interrater reliability. The
						advantages compared to other facial movement
						evaluation systems include short calibration and

					measuring time, straightforward operation, and
					it providing distances, velocities, and areas.
37. 71	Banks, CA	2015	Plastic and	Clinician-Graded	Development and evaluation of new reanimation
			Reconstructive	Electronic Facial	grading scale consisting of 16 items visual
			Surgery	Paralysis	analogue scale, with high interrater and
				Assessment: The	intrarater reliability.
				eFACE	
38. 70	Frey, M	2004	Plastic and	Dynamic	First study to evaluate dynamic 3D eyelid
			Reconstructive	reconstruction of	movement pre and post operatively. 34 of 44
			Surgery	eye closure by	patients were treated with temporalis muscle
				muscle	transposition for reanimation and eye closure.
				transposition or	Temporalis muscle transposition and functional
				functional muscle	muscle transplantation for reanimating the eye
				transplantation in	and mouth are reliable methods for
				facial palsy	reconstructing eye closure and may reduce
					secondary operative corrections.
 39. 69	Byrne, PJ	2007	Archives of Facial	Temporalis tendon	Case series of 7 patients who underwent
			Plastic Surgery	transfer as part of a	temporalis muscle transfer, with achievement of
				comprehensive	satisfactory result with high patient satisfaction.
				approach to facial	This procedure results in improved form and
				reanimation	function, may often be performed in a minimally
					invasive manner, and eliminates the facial
					asymmetry typically produced by temporalis
					transfer.
40. 69	Hadlock, TA	2006	Laryngoscope	Multimodality	Review of the authors experience with 337
				approach to	patients treated with various modalities.
				management of the	Facial paralysis is best managed using a
				management of the paralyzed face	Facial paralysis is best managed using a multimodality approach that includes surgical

interventions, physical therapy, and

chemodenervation. Surgical intervention for

reanimation was discussed.

4	41. 69	Hammerschl	1999	Laryngoscope	Facial reanimation	Case series of 18 patients who underwent jump
		ag, PE			with jump	interpositional graft hypoglossal-facial
					interpositional graft	anastomosis.
					hypoglossal facial	No hemilingual deficiency was noted. In contrast
					anastomosis and	to the HFA, this procedure can be used by
					hypoglossal facial	patients with concomitant lower cranial nerve
					anastomosis:	paralysis (except hypoglossal), and bilateral facial
					Evolution in	paralysis. Hypertonia, synkinesis, and
					management of	lagophthalmus were less.
					facial paralysis	
4	12. 69	A L Dellon	1985	Journal of	Segmentally	Describe are the anatomic dissections and clinical
				Reconstructive	innervated	experience using a small segmentally innervated
				Microsurgery	latissimus dorsi	portion of the latissimus dorsi muscle to restore
					muscle	facial animation.
					microsurgical	
					transfer for facial	
					reanimation	
4	13. 68	Hadlock,	2012	Archives of Facial	Toward a Universal,	Development of automated facial function
		Tessa A.		Plastic Surgery	Automated Facial	software. FACE software produces accurate
					Measurement Tool	measurements of facial landmarks and facial
					in Facial	movements and is sensitive to paralysis. Given its
					Reanimation	efficiency, it serves as a useful tool in the clinical
						setting for zonal facial movement analysis in

						comprehensive facial nerve rehabilitation
						programs.
Z	44. 68	Malik, TH	2005	Otology &	A comparison of	Comparison of three surgical techniques
				Neurotology	surgical techniques	including end-to-end anastomosis, cable nerve
					used in dynamic	graft interposition, and classic faciohypoglossal
					reanimation of the	transposition. End-to-end anastomosis confers
					paralyzed face	the best facial function, followed by cable nerve
						graft interposition and then classic
						faciohypoglossal transposition. Contrary to some
						previous opinions, improvement in facial
						function can still occur 2 years after surgical
						repair, particularly with classic faciohypoglossal
						transposition.
	45. 67	Terzis, JK	2000	Plastic and	Microsurgical	This article presents innovative approaches to
				Reconstructive	strategies in 74	restore dynamic depressor muscle function,
				Surgery	patients for	which so far has been a neglected area of facial
					restoration of	reanimation according to the authors.
					dynamic depressor	
					muscle mechanism:	
					A neglected target	
					in facial reanimation	
ζ	46. 65	Rose, EH	2005	Plastic and	Autogenous fascia	The authors utilized fascia lata alone or in
				Reconstructive	lata grafts: Clinical	combination with dynamic muscle transfer in 35
				Surgery	applications in	patients. Early placement of autogenous fascia
					reanimation of the	lata restores static balance of the deeper facial
					totally or partially	architecture in repose. Functional improvement
					paralyzed face	of chewing, fluid retention, speech articulation,
						smile symmetry, and ectropion is immediate.

 47. 64 Samil, M 194 Actaneurochirugi Indication, Descriptive results of 160 patients with various ca technique and nerve discontinuity and discussion of various results of Gaila 18. 64 Kanta Kalana Ka							
48. 64 Marktelow 1984 Cinici in Plastic Free Muscle A case report discussion of various 48. 64 Marktelow 1984 Cinici in Plastic Free Muscle A case report discussion the transplantation of a missing nerve segment to cross face nerve transplantation was discussed. 49. 63 Faria, JCM 2007 Anals of Plastic Rerve Sources for earliers with goad functional and cosmetic results. No muscle transplantation of a missing nerve segment to cross face nerve grant. All of their patients achieved satisfactory functional and cosmetic results. No muscle transplantation was discussed. 48. 64 Marktelow 1984 Cinics in Plastic Free Muscle A case report discussion the transplantation of a mastermosity, with goad functional outcome. 49. 63 Faria, JCM 2007 Anals of Plastic Nerve Sources for Case series where different source nerve and for rearimation, including the with Muscle 2-stage cross face nerve graft-gracits muscle, nerve graft 49. 63 Faria, JCM 2007 Anals of Plastic Herve Sources for Case series where different source nerve and for rearimation, including the with Muscle 2-stage cross face nerve graft-gracits muscle, nerve graft 49. 63 62 Casimano, 1994 Neurosurgery F	47. E	54	Samii, M	1994	Actaneurochirugi	Indication,	Descriptive results of 160 patients with various
 results of facial reconstruction graft. All of their patients achieved satisfactory functional and cosmetic results. No muscle transplantation was discussed. RT Surgery Free Muscle Acase report discussion the transplantation of a RT Surgery Free Muscle Facial Paralysis reanimation with lipsilateral buccal nerve branch anastomosis, with good functional outcome. 49. 63 Faria, JCM 2007 Annals of Plastic Surgery Facial Paralysis reanimation with lipsilateral buccal nerve branch anastomosis, with good functional outcome. Surgery Facial Reanimation muscles were used for reanimation, including the with Muscle 2-stage cross face nerve graft gradits muscle and cross face Patients with nerve graft, and one stage gradits muscle and cross face Patients with unilateral Facial muscles more uniform and predictable result the other two methods. one stage gradits muscle and cross face MD VE Kerve Patient Swift results of 3 one stage gradits muscle and cross face results of 3 one stage gradits muscle and cross face results of 3 one stage gradits muscle and cross face results of 3 one stage gradits muscle and cross face results of 3 one stage gradits muscle and cross face results of 3 one stage gradits muscle and cross face results of 3					са	technique and	nerve discontinuity and discussion of various
48. 64 Marktelow, 1984 Clinics in Plastic Free Muscle A case report discussion the transplantation of a reanimation was discussed. 48. 64 Marktelow, 1984 Clinics in Plastic Free Muscle A case report discussion the transplantation of a segment of the gracilis muscle for facial 48. 64 Marktelow, 1984 Clinics in Plastic Free Muscle A case report discussion the transplantation of a segment of the gracilis muscle for facial 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case report discussion the stage and cross face nerve graft-gracilis muscle, 1- 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case report discussion and cross face nerve graft-gracilis muscle, 1- 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case r						results of facial-	treatment modalities ranging from nerve graft
 Preconstruction graft. All of their patients achieved satisfactory functional and cosmetic results. No muscle transplantation was discussed. 48. 64 Manktelow, 1984 Clinics in Plastic RT Surgery 49. 63 Faria, JCM 2007 Annals of Plastic Surgery 49. 63 Faria, JCM 2007 Annals of Plastic Surgery 40. 63 Faria, JCM 2007 Annals of Plastic Surgery 41. Verve Sources for Case series where different source nerve and Surgery 42. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Surgery 43. 64 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Surgery 44. 5. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Surgery 45. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Surgery 45. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Surgery 45. 64 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Surgery 45. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Case se						nerve	for a missing nerve segment to cross face nerve
48. 64 Manktelow, 1984 Clinics in Plastic Free Muscle A case report discussion the transplantation of a 48. 64 Manktelow, 1984 Clinics in Plastic Free Muscle A case report discussion the transplantation of a RT Surgery Transplantation for segment of the gracilis muscle for facial 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 40. 63 Faria, JCM 2007 Annals of Plastic Neuroscie -stage cross face nerve graft-gra						reconstruction	graft. All of their patients achieved satisfactory
48. 64 Manktelow, 198 Clinics in Plastic Free Muscle A case report discussion the transplantation of a segment of the gracilis muscle for facial RT V Surgery Transplantation for segment of the gracilis muscle for facial Facial Paralysis reanimation with ipsilateral buccal nerve branch anastomosis, with good functional outcome. anastomosis, with good functional outcome. 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Surgery 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and muscles were used for reanimation, including the with Muscle 2-stage cross face nerve graft-gracilis muscle, 1- Transplant in stage latissimus dorsi muscle and cross face Patients with nerve graft, and one stage gracilis muscle with Unilateral Facial Unilateral Facial masseteric nerve. The cross face nerve graft Palsers of 3 one stage gracilis muscle-masseteric nerve techniques 50. 62 Cusimano, 199 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD V V Facial-Nerve anastomosis for function while providing adequate facial Reinnervation of Fanalyzed Face							functional and cosmetic results. No muscle
48. 64 Manktelow, 1984 Clinics in Plastic Free Muscle A case report discussion the transplantation of a segment of the gracilis muscle for facial reanimation with ipsilateral buccal nerve branch anastomosis, with good functional outcome. 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Surgery Case series where different source nerve and muscles were used for reanimation, including the with Muscle 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Surgery Case series where different source nerve and muscles were used for reanimation, including the with Muscle 2-stage cross face nerve graft-gracilis muscle, 1- Transplant in stage latissimus dorsi muscle and cross face Patients with nerve graft, and one stage gracilis muscle with Unilateral Facial masseteric nerve. The cross face nerve graft Palsy - Clinical analysis of 3 one stage gracilis muscle-masseteric nerve achieved more uniform and predictable result MD 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>transplantation was discussed.</td></tr<>							transplantation was discussed.
RT Surgery Transplantation of segment of the gracilis muscle for facial Facial Paralysis reanimation with ipsilateral buccal nerve branch anastomosis, with good functional outcome. 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and muscles were used for reanimation, including the with Muscle 2.stage cross face nerve graft gracilis muscle, 1- Transplant in stage latissimus dorsi muscle and cross face Patients with nerve graft, and one stage gracilis muscle with unilateral Facial Palse - Clinical groups have 34-45% emotional smile, but the analysis of 3 one stage gracilis muscle rerve techniques achieved more uniform and predictable result than the other two methods. 50. 62 Cusimano, 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD In Facial Nerve nastomosis for function while providing adequate facial nastomosis for function while providing adequate facial MD In Paralyzed Face in Paralyzed Face motor end plate function. motor end plate function.	48. E	54	Manktelow,	1984	Clinics in Plastic	Free Muscle	A case report discussion the transplantation of a
49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and 49. 63 Faria, JCM 14 Facial Parialiton muscles were used for reanimation, including the 49. 64 Facial Parialiton nerve graft, and one stage gracills muscle with Initateral Facial masseteric nerve. The cross face nerve graft analysis of 3 one stage gracills muscle masseteric nerve 50. 62 Cusimano,			RT		Surgery	Transplantation for	segment of the gracilis muscle for facial
 49. 63 Faria, JCM 2007 Annals of Plastic Surgery Facial Reanimation muscles were used for reanimation, including the with Muscle 2-stage cross face nerve graft-gracilis muscle, 1- Transplant in stage latissimus dorsi muscle and cross face Patients with nerve graft, and one stage gracilis muscle with Unilateral Facial groups have 34-45% emotional smile, but the analysis of 3 one stage gracilis muscle-masseteric nerve techniques achieved more uniform and predictable result than the other two methods. 50. 62 Cusimano, 1994 Neurosurgery Patial Hypoglossal Description of partial hypoglossal to facial Reinnervation of function while providing adequate facial Reinnervation of reanimation in those with still preserved muscle In Patients with Lower Cranial Nerve 						Facial Paralysis	reanimation with ipsilateral buccal nerve branch
49. 63 Faria, JCM 2007 Annals of Plastic Nerve Sources for Case series where different source nerve and Surgery Facial Reanimation muscles were used for reanimation, including the with Muscle 2-stage cross face nerve graft-gracilis muscle, 1- Transplant in stage latissimus dorsi muscle and cross face Patients with nerve graft, and one stage gracilis muscle with Unilateral Facial masseteric nerve. The cross face nerve graft Palsy - Clinical groups have 34-45% emotional smile, but the analysis of 3 one stage gracilis muscle-masseteric nerve techniques achieved more uniform and predictable result than the other two methods. Description of partial hypoglossal to facial MD to Facial-Nerve anastomosis that preserve hypoglossal nerve Reinnervation of function while providing adequate facial Reinnervation of reanimation in those with still preserved muscle the Paralyzed Face motor end plate function. in Patients with Lower Cranial Nerve							anastomosis, with good functional outcome.
SurgeryFacial Reanimationmuscles were used for reanimation, including the with MuscleWith Muscle2-stage cross face nerve graft-gracilis muscle, 1- stage latissimus dorsi muscle and cross facePatients withnerve graft, and one stage gracilis muscle with Unilateral FacialPalsy - Clinicalgroups have 34-45% emotional smile, but the analysis of 3Palsy - Clinicalgroups have 34-45% emotional smile, but the analysis of 3S0. 62Cusimano,1994NDVeurosurgeryMDPartial HypoglossalMDVeurosurgeryAnastomosis for Reinnervation of the Paralyzed Face in Patients withIncention while providing adequate facial Reinnervation of in Patients withIn Patients with Lower Cranial Nerve	49. 6	53	Faria, JCM	2007	Annals of Plastic	Nerve Sources for	Case series where different source nerve and
 with Muscle 2-stage cross face nerve graft-gracilis muscle, 1- Transplant in stage latissimus dorsi muscle and cross face Patients with nerve graft, and one stage gracilis muscle with Palisy - Clinical groups have 34-45% emotional smile, but the analysis of 3 one stage gracilis muscle-masseteric nerve techniques achieved more uniform and predictable result than the other two methods. 50. 62 Cusimano, 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD Vol Facial-Nerve Anastomosis for function while providing adequate facial Reinnervation of reanimation in those with still preserved muscle the Paralyzed Face in Patients with Lower Cranial Nerve Lower Cranial Nerve					Surgery	Facial Reanimation	muscles were used for reanimation, including the
Transplant in stage latissimus dorsi muscle and cross face Patients with nerve graft, and one stage gracilis muscle with Unilateral Facial masseteric nerve. The cross face nerve graft Palsy - Clinical groups have 34-45% emotional smile, but the analysis of 3 one stage gracilis muscle-masseteric nerve techniques achieved more uniform and predictable result than the other two methods. than the other two methods. 50. 62 Cusimano, 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD Image: Partial Hypoglossal for facial Reinnervation of reanimation in those with still preserved muscle Reinnervation of reanimation in those with still preserved muscle the Paralyzed Face motor end plate function. in Patients with Lower Cranial Nerve Lower Cranial Nerve How Face						with Muscle	2-stage cross face nerve graft-gracilis muscle, 1-
Patients with nerve graft, and one stage gracilis muscle with Unilateral Facial masseteric nerve. The cross face nerve graft Palsy - Clinical groups have 34-45% emotional smile, but the analysis of 3 one stage gracilis muscle-masseteric nerve techniques anileved more uniform and predictable result box for Facial-Nerve MD Very Server Anastomosis for function while providing adequate facial Reinnervation of reamination in those with still preserved muscle in Patients with in Patients with						Transplant in	stage latissimus dorsi muscle and cross face
Unilateral Facialmasseteric nerve. The cross face nerve graftPalsy - Clinicalgroups have 34-45% emotional smile, but theanalysis of 3one stage gracilis muscle-masseteric nervetechniquesachieved more uniform and predictable result50. 62Cusimano,1994MDPartial HypoglossalDescription of partial hypoglossal to facialMDto Facial-Nerveanastomosis that preserve hypoglossal nerveAnastomosis forfunction while providing adequate facialReinnervation ofreanimation in those with still preserved musclethe Paralyzed Facemotor end plate function.in Patients withLower Cranial Nerve						Patients with	nerve graft, and one stage gracilis muscle with
Palsy - Clinical groups have 34-45% emotional smile, but the analysis of 3 one stage gracilis muscle-masseteric nerve techniques achieved more uniform and predictable result than the other two methods. than the other two methods. 50. 62 Cusimano, 1994 MD V Facial-Nerve Anastomosis for function while providing adequate facial Reinnervation of reanimation in those with still preserved muscle the Paralyzed Face motor end plate function. in Patients with Lower Cranial Nerve						Unilateral Facial	masseteric nerve. The cross face nerve graft
analysis of 3one stage gracilis muscle-masseteric nervetechniquesachieved more uniform and predictable resultthan the other two methods.than the other two methods.50. 62Cusimano,1994NeurosurgeryPartial HypoglossalMDVVto Facial-Nerveanastomosis that preserve hypoglossal nerveAnastomosis forfunction while providing adequate facialReinnervation ofreanimation in those with still preserved musclethe Paralyzed Facethe Paralyzed Facemotor end plate function.in Patients withLower Cranial NerveLower Cranial NerveLower Cranial Nerve						Palsy - Clinical	groups have 34-45% emotional smile, but the
50. 62 Cusimano, 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD Image: Comparison of the						analysis of 3	one stage gracilis muscle-masseteric nerve
50. 62 Cusimano, 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD to Facial-Nerve anastomosis that preserve hypoglossal nerve Anastomosis for function while providing adequate facial Reinnervation of reanimation in those with still preserved muscle the Paralyzed Face motor end plate function. in Patients with Lower Cranial Nerve						techniques	achieved more uniform and predictable result
50. 62 Cusimano, 1994 Neurosurgery Partial Hypoglossal Description of partial hypoglossal to facial MD to Facial-Nerve anastomosis that preserve hypoglossal nerve Anastomosis for function while providing adequate facial Reinnervation of reanimation in those with still preserved muscle the Paralyzed Face motor end plate function. in Patients with Lower Cranial Nerve							than the other two methods.
MDto Facial-Nerveanastomosis that preserve hypoglossal nerveAnastomosis forfunction while providing adequate facialReinnervation ofreanimation in those with still preserved musclethe Paralyzed Facemotor end plate function.in Patients withLower Cranial Nerve	50. 6	52	Cusimano,	1994	Neurosurgery	Partial Hypoglossal	Description of partial hypoglossal to facial
Anastomosis forfunction while providing adequate facialReinnervation ofreanimation in those with still preserved musclethe Paralyzed Facemotor end plate function.in Patients withLower Cranial Nerve			MD			to Facial-Nerve	anastomosis that preserve hypoglossal nerve
Reinnervation of the Paralyzed Facereanimation in those with still preserved musclein Patients within Patients withLower Cranial NerveImage: Cranial Nerve						Anastomosis for	function while providing adequate facial
the Paralyzed Face motor end plate function. in Patients with Lower Cranial Nerve						Reinnervation of	reanimation in those with still preserved muscle
in Patients with Lower Cranial Nerve						the Paralyzed Face	motor end plate function.
Lower Cranial Nerve						in Patients with	
						Lower Cranial Nerve	

Palsies – Technical

Note

Supplementary Table 1						
Country	Citations					
USA	18					
Japan	6					
Canada	6					
Australia	4					
Austria	4					
Germany	3					
UK	3					
Spain	1					
Netherlands	1					
Italy	1					
Switzerland	1					
France	1					
Brazil	1					
Total	50					

Supplementary Table 2

Rank	Number	Author	Year	Journal	Title	Institution
	of					
	Citations					
1.	464	Harii K et al	1976	Plastic &	Free gracilis muscle	Tokyo Metropolitan Police
				Reconstructive	transplantation, with	Hospital
				Surgery	microneurovascular	
					anastomoses for treatment of	
					facial paralysis - preliminary-	
					report	
2.	204	May M et	1991	Otolaryngology-	Hypoglossal-facial nerve	University of Pittsburgh
		al		Head and Neck	interpositional-jump graft for	
					facial reanimation without	
					tongue atrophy	
3.	181	Terzis JK &	1997	Plastic &	Analysis of 100 cases of free-	International Institution of
		Noah ME		Reconstructive	muscle transplantation for	Reconstructive Microsurgery,
				Surgery	facial paralysis	Virginia
4.	179	Manktelow	2006	Plastic &	Smile reconstruction in adults	Toronto General Hospital
		, RT		Reconstructive	with free muscle transfer	
				Surgery	innervated by the masseter	
					motor nerve: Effectiveness and	
					cerebral adaptation	
5.	163	Harii, K	1998	Plastic &	One-stage transfer of the	University of Tokyo
				Reconstructive	latissimus dorsi muscle for	
				Surgery	reanimation of a paralyzed	
					face: A new alternative	

6. 154	Obrien, BM	1980	British Journal	Cross-facial nerve grafts and	St. Vincent's Hospital
			of Plastic	microneurovascular free	
			Surgery	muscle transfer for long	
				established facial palsy	
7. 139	Zuker, RM	2000	Plastic and	Facial animation in children	The Hospital for Sick Children.
			Reconstructive	with Mobius syndrome after	
			Surgery	segmental gracilis muscle	
				transplant	
8. 136	Bae, YC	2006	Plastic &	A comparison of commissure	The Hospital for Sick Children
			Reconstructive	excursion following gracilis	
			Surgery	muscle transplantation for	
				facial paralysis using a cross-	
				face nerve graft versus the	
				motor nerve to the masseter	
				nerve	
9. 136	Labbe, D	2000	Plastic &	Lengthening temporalis	Caen University Hospital
			Reconstructive	myoplasty and lip reanimation	
			Surgery		
10 122	Coulson, SE	2005	Otolaryngology-	Reliability of the Sydney,	University of Sydney
			Head and Neck	Sunnybrook, and House	
				Brackmann facial grading	
				systems to assess voluntary	

				movement and synkinesis after	
				facial nerve paralysis	
11 119	Terzis, JK	2009	Plastic and	The Babysitter Procedure:	Microsurgical Research Center,
			Reconstructive	Minihypoglossal to Facial	Virginia
			Surgery	Nerve Transfer and Cross-	
				Facial Nerve Grafting	
12 119	Terzis, JK	1989	Plastic and	Pectoralis minor - a unique	East Viriginia Medical School
			Reconstructive	muscle for correction of facial	
			Surgery	palsy	
 13 118	Obrien, BM	1990	Plastic and	Results of management of	St. Vincent's Hospital
			Reconstructive	facial palsy with microvascular	
			Surgery	free-muscle transfer	
14 118	Harrison,	1985	Plastic and	The pectoralis minor	Mount Vernon Hospital,
	DH		Reconstructive	vascularized muscle graft for	Northwick Park Hospital,
			Surgery	the treatment of unilateral	Edgware General Hospital, and
				facial palsy	Barnet General Hospital
 15 117	Manktelow	1984	Plastic and	Muscle transplantation by	University of Toronto, Toronto
	<i>,</i> RT		Reconstructive	fascicular territory	General Hospital, and The
			Surgery		Hospital for Sick Children
16 99	Arai H	1995	Journal of	Hemihypoglossal-facial nerve	Juntendo University, Tokyo
			Neurosurgery	anastomosis in treating	

				unilateral facial palsy after	
				acoustic neurinoma resection	
17 97	Frey M	1994	Plastic and	Development of a new	University of Zurich
			Reconstructive	documentation system for	
			Surgery	facial movements as a basis for	
				the international registry for	
				neuromuscular reconstruction	
				in the face	
18 96	Atlas, MD	1997	Laryngoscope	A new technique for	St. Vincent's Hospital, Sydney
				hypoglossal-facial nerve repair	
19 95	Sawamura,	1997	Journal of	Hypoglossal-facial nerve side-	University of Hokkaid
	Y		Neurosurgery	to-end anastomosis for	
				preservation of hypoglossal	
				function: Results of delayed	
				treatment with a new	
				technique	
20 94	Whitney,	1990	Plastic and	The serratus anterior free-	Davis Medical Center
	TM		Reconstructive	muscle flap - experience with	
			Surgery	100 consecutive cases	
21 92	Hohman,	2014	Laryngoscope	Etiology, Diagnosis, and	Massachusetts Eye and Ear
	Marc			Management of Facial Palsy:	Infirmary
				2000 Patients at a Facial Nerve	
				Center	

22 89	Andrel, H	1973	Chirurgia	Reconstruction of face through	Innsbruck University Hospital
			Plastica	cross-face-nerve	
				transplantation in facial	
				paralysis	
23 87	Coombs, CJ	2009	Journal of	Masseteric-facial nerve	Royal child hospital and The
			Plastic	coaptation - an alternative	Alfred Hospital
			Reconstructive	technique for facial nerve	
			and Aesthetic	reinnervation	
			Surgery		
24 87	Stennert, E	1979	Clinics in Plastic	Hypoglossal facial anastomosis	Universitäts Klinik
			Surgery	- its significance for modern	
				facial surgery .1. combined	
				approach in extra-temporal	
				facial-nerve reconstruction .2.	
25 85	Kumar, Pav	2002	Plastic and	Cross-face nerve graft with	Whiston hospital
			Reconstructive	free-muscle transfer for	
			Surgery	reanimation of the paralyzed	
				face: A comparative study of	
				the single-stage and two-stage	
				procedures	
26 85	Harii, K	1979	Clinics in Plastic	Micro-neurovascular free	University of Tokyo Hospital
			Surgery	muscle transplantation for	
				reanimation of facial paralysis	

27	84	Navissano,	2005	Microsurgery	Neurotube((R)) for facial nerve	CTO Hospital Turin
		Μ			repair	
28	84	Freilinger,	1975	Plastic and	New technique to correct	Surgical University Clinic Vienna
		G		Reconstructive	facial paralysis	
				Surgery		
29	83	Koshima, I	1994	Plastic and	Free rectus femoris muscle	Kawasaki medical school
				Reconstructive	transfer for one-stage	
				Surgery	reconstruction of established	
					facial paralysis	
30	80	Guntinas-	2006	American	Postoperative functional	Cologne University
		Lichius O		Journal of	evaluation of different	
				Surgery	reanimation techniques for	
					facial nerve repair	
31	79	Klebuc, MJ	2011	Plastic and	Facial Reanimation Using the	The Methodist Hospital,
				Reconstructive	Masseter-to-Facial Nerve	Houston
				Surgery	Transfer	
32	79	Johnson,	1994	Annals of Plastic	Simultaneous quantitation of	University of Pittsburg
		PC		Surgery	facial movements - the	
					maximal static response assay	
					of facial-nerve function	
33	78	Terzis, JK	2008	Facial Plastic	Nerve transfers in facial palsy	Eastern Viriginia Medical School
				Surgery		
34	77	Lifchez, SD	2005	Facial Plastic	Cortical adaptation to	Medical College of Wisconsin
				Surgery	restoration of smiling after	

				free muscle transfer	
				innervated by the nerve to the	
				masseter	
35 75	Manni, JJ	2001	American	Reanimation of the paralyzed	University of Maastricht
			Journal of	face by indirect hypoglossal-	
			Surgery	facial nerve anastomosis	
36 72	Hontanilla,	2008	Journal of	Automatic three-dimensional	University of Navarra
	В		Plastic	quantitative analysis for	
			Reconstructive	evaluation of facial movement	
			and Aesthetic		
			Surgery		
37 71	Banks, CA	2015	Plastic and	Clinician-Graded Electronic	From the Division of Facial
			Reconstructive	Facial Paralysis Assessment:	Plastic and Reconstructive
			Surgery	The eFACE	Surgery, Department of
					Otolaryngology/Head and Neck
					Surgery, Harvard Medical
					School/Massachusetts Eye and
					Ear Infirmary, Harvard Medical
					School/Boston Children's
					Hospital, the Department of
					Mathematical Sciences, Bentley
					University; and the Department
					of Otolaryngology–Head and
					Neck Surgery, Alaska Native

					Medical Center, Alaska Native
					Tribal Health Consortium.
38 70	Frey, M	2004	Plastic and	Dynamic reconstruction of eye	University of Vienna
			Reconstructive	closure by muscle	
			Surgery	transposition or functional	
				muscle transplantation in facial	
				palsy	
39 69	Byrne, PJ	2007	Archives of	Temporalis tendon transfer as	Johns Hopkins University
			Facial Plastic	part of a comprehensive	
			Surgery	approach to facial reanimation	
40 69	Hadlock,	2006	Laryngoscope	Multimodality approach to	Massachusetts Eye and Ear
	ТА			management of the paralyzed	Infirmary
				face	
41 69	Hammersc	1999	Laryngoscope	Facial reanimation with jump	New York University Medical
	hlag, PE			interpositional graft	Centre
				hypoglossal facial anastomosis	
				and hypoglossal facial	
				anastomosis: Evolution in	
				management of facial paralysis	
42 69	A L Dellon	1985	Journal of	Segmentally innervated	Johns Hopkins University School
			Reconstructive	latissimus dorsi muscle	of Medicine, University of
			Reconstructive Microsurgery	latissimus dorsi muscle microsurgical transfer for facial	of Medicine, University of Toronto
			Reconstructive Microsurgery	latissimus dorsi muscle microsurgical transfer for facial reanimation	of Medicine, University of Toronto

43 68	B Hadlock,	2012	Archives of	Toward a Universal,	Massachusetts Eye and Ear
	Tessa A.		Facial Plastic	Automated Facial	Infirmary
			Surgery	Measurement Tool in Facial	
				Reanimation	
44 68	3 Malik, TH	2005	Otology &	A comparison of surgical	Manchester Royal Infirmary
			Neurotology	techniques used in dynamic	
				reanimation of the paralyzed	
				face	
45 67	7 Terzis, JK	2000	Plastic and	Microsurgical strategies in 74	Microsurgical Research Center,
			Reconstructive	patients for restoration of	Virginia
			Surgery	dynamic depressor muscle	
				mechanism: A neglected target	
				in facial reanimation	
46 65	6 Rose, EH	2005	Plastic and	Autogenous fascia lata grafts:	Mount Sinai Medical Center
			Reconstructive	Clinical applications in	
			Surgery	reanimation of the totally or	
				partially paralyzed face	
47 64	A Samii, M	1994	Actaneurochiru	Indication, technique and	Nordstadt Hospital
			gica	results of facial-nerve	
				reconstruction	
48 64	A Manktelow	1984	Clinics in Plastic	Free Muscle Transplantation	Toronto General Hospital
	, RT		Surgery	for Facial Paralysis	
49 63	B Faria, JCM	2007	Annals of Plastic	Nerve Sources for Facial	Hispital das Clinicas
			Surgery	Reanimation with Muscle	
				Transplant in Patients with	

				Unilateral Facial Palsy - Clinical	
				analysis of 3 techniques	
50 62	Cusimano,	1994	Neurosurgery	Partial Hypoglossal to Facial-	University of Toronto
	MD			Nerve Anastomosis for	
				Reinnervation of the Paralyzed	
				Face in Patients with Lower	
				Cranial Nerve Palsies –	
				Technical Note	

Supplementary Material

Click here to access/download **Supplemental Data File (.doc, .tif, pdf, etc.)** Copy of Top 500 records facial reanimation WoS (4).xlsx